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Abstract

A new conservative gyrokinetic full-f Vlasov code is developed using a finite difference operator which conserves both
the L1 and L2 norms. The growth of numerical oscillations is suppressed by conserving the L2 norm, and the code is
numerically stable and robust in a long time simulation. In the slab ion temperature gradient driven (ITG) turbulence sim-
ulation, the energy conservation and the entropy balance relation are confirmed, and solutions are benchmarked against a
conventional df particle-in-cell (PIC) code. The results show that the exact particle number conservation and the good
energy conservation in the conservative Vlasov simulation are advantageous for a long time micro-turbulence simulation.
In the comparison, physical and numerical effects of the vk nonlinearity are clarified for the Vlasov and PIC simulations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Five dimensional (5D) gyrokinetic simulations are essential tools to study anomalous turbulent transport in
tokamak plasmas [1–3]. Although several gyrokinetic simulations have been developed based on particle
(Lagrangian) and mesh (Eulerian) approaches, most of full torus global simulations have adopted a particle
approach [4–8] because of limitations on computational resources such as the memory size. A df particle-in-cell
(PIC) method [9–11] enabled an accurate calculation of small amplitude turbulent fluctuations with dn/n0 � 1%
in a collisionless fusion plasma, where n0 and dn are the equilibrium and fluctuating density. However, the
method is based on the conservation property or the Liouville’s theorem in a collisionless gyrokinetic equation,
and in a broad sense, most of the df PIC simulations are decaying turbulence simulations, where an isolated
system without collisions and sources is relaxed from a linearly unstable initial condition to a nonlinearly sat-
urated state. Starting from early pioneering works [4–6], such decaying turbulence simulations played
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significant roles in studying physical issues behind tokamak turbulent transport. For example, recent works
addressed nonlinear processes leading to structure formations such as the magnetic shear dependence of the
electron temperature gradient driven (ETG) turbulence [12], the self-organisation of ETG zonal flows [13],
and the plasma current dependence of zonal flows and geodesic acoustic modes in the ion temperature gradient
driven (ITG) turbulence [14]. Although decaying turbulence simulations of collisionless and sourceless system
are still useful for studying transient nonlinear processes coming from the Hamiltonian dynamics, from the
viewpoint of the entropy balance relation [15–17], they do not reach at statistically steady states until the heat
transport is almost quenched by stabilising effects such as zonal flows and quasi-linear flattening [18]. Such sim-
ulations are also characterised by strong profile relaxations due to linear modes, and therefore their relaxed
states are not the same as those would be attained if real collisions, sources, and sinks were included. In this
sense, the existing decaying turbulence simulations are not enough for estimating realistic turbulent transport
coefficients for quasi-steady equilibrium profiles balanced with real sources. In addition, more realistic long
time turbulence simulations with collisions and sources are desirable to address future issues, for example,
the formation of transport barriers. Extensions of the df method have been attempted for a driven local system
[19], a heat source model [20], and a collisional effect [21]. However, Ref. [22] showed that complicated statis-
tical treatments are needed to define df in the system with non-conservative effects, where nonlinear character-
istics cross each other. Although the collisional df method based on this approach was successfully applied to
neoclassical df simulations [23,24], further developments are needed before applying it to tokamak micro-
turbulence.

On the other hand, a mesh approach, which is often called Vlasov or continuum, is much more flexible in
treating these non-conservative effects, and is likely to become another solution because of recent advances in
computational fluid dynamics (CFD) schemes and increasing computational resources. So far, local flux tube
toroidal df simulations [25–27] and its extension including global profile effects [28] were developed with spec-
tral and dissipative finite difference methods. Although a df approach, in which local background gradients are
fixed on average, may be useful for estimating quasi-steady transport coefficients for given density and tem-
perature profiles, such a fixed gradient assumption may not be valid for studying fast time scale (�ms) profile
variations such as avalanche like phenomena [29] and transient changes of profiles and turbulent transport in
the modulation experiments [30]. Moreover, turbulent time scale relaxation oscillation events such as bursts
and avalanches were reported in flux driven fluid simulations [31,32]. A global full-f approach with evolving
background profiles is desirable in studying interactions between transient turbulent transport and profile for-
mations, which dictate intermittent behaviours of turbulent transport and formations of transport barriers. As
for a global full-f approach, cylindrical [33,34] and slab [35] gyrokinetic Vlasov codes were developed using the
semi-Lagrangian method [36] and the constrained-interpolation-profile (CIP) method [37], and they were
benchmarked against PIC codes. However, in our previous work [35], the quality of the energy and particle
number conservations in the Vlasov CIP code was almost the same level as in the df PIC code, and the break-
down of conservation properties was still problematic in a long time micro-turbulence simulation. To resolve
this issue, we need a conservative full-f Vlasov code that is numerically stable and robust in a long time micro-
turbulence simulation.

In contrast to the Vlasov–Poisson system, the Hamiltonian of the toroidal gyrokinetic Vlasov–Poisson sys-
tem is not separable because of E · B and magnetic drifts, and the splitting method [41], which is sort of sec-
ond-order symplectic integration, is not available. Therefore, a direct treatment of incompressible
Hamiltonian flows in 5D phase space is required to develop a conservative gyrokinetic simulation. Although
several semi-Lagrangian type conservative methods have been proposed [38–40], their extension to multiple
dimension without the splitting method may be costly because of high dimensional interpolation. As for a con-
ventional Eulerian scheme, a finite volume method or a centred finite difference method conserves the particle
distribution function, F, but the scheme often becomes unstable when numerical oscillations due to aliasing
errors are produced. The aliasing error is inevitable in resolving fine scale structures or filamentation with
finite discrete grids. However, in Ref. [42], it was pointed out that such a numerical instability may be avoided
by conserving the square quantity, which bounds the amplitude of numerical oscillations. Morinishi et al. pro-
posed a new finite difference operator, which can be easily extended to higher order accuracy and conserves
both the momentum and kinetic energy, which correspond to F and F2 in the present problem, and it was suc-
cessfully applied to incompressible neutral fluid simulations [43]. An importance of the conservations of F and
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F2 was pointed out also in recent gyrokinetic Vlasov simulations [44,28]. It may also be possible to avoid
numerical oscillations using non-oscillatory advection schemes such as total variation diminishing (TVD) type
schemes, which make use of numerical dissipation. However, in the present problem, the Morinishi scheme is
preferable, because its concept naturally fits the first principles of the gyrokinetic equation, which conserves F
and F2 as the Casimir invariants.

In this work, we develop a conservative Gyrokinetic 5D full-f Vlasov code (G5D) using the Morinishi
scheme, and discuss its numerical properties by comparing the results from ITG turbulence simulations with
the Morinishi scheme and with a finite volume method. We then show benchmarks of ITG turbulence simu-
lations between the new Vlasov code and a conventional df PIC code, and discuss a possibility of a long time
micro-turbulence simulation.

As an application of the new Vlasov code to a physical problem, we study a role of the vk nonlinearity. In
the gyrokinetic simulation, the vk nonlinearity is often ignored, because this term is one of higher order effects
according to the gyrokinetic ordering. Historically, the gyrokinetic equation based on the recursive method
[45] was formulated without this term, and the equation is still used in several gyrokinetic simulations. In
Ref. [46], it was reported that in cylindrical simulations of ITG turbulence, not only particle noise but also
neglecting the vk nonlinearity affect the error on the particle number conservation, leading to erroneous zonal
flow structures and thereby potentially affecting the computed level of heat transport. However, in slab or
cylindrical models, the vk nonlinearity itself does not violate the particle number conservation, and it is not
clear whether the effect is numerical or physical. In the present study, we discuss numerical effects of the vk
nonlinearity on the Vlasov and PIC simulations, and then validate its physical effects by showing the entropy
balance relation. Exact conservation properties of the new Vlasov code are useful in distinguishing numerical
from physical effects.

The reminder of the paper is organised as follows. In Section 2, we describe a 5D gyrokinetic model and its
reduced 4D model, and show conservation properties in these models. In Section 3, we present the Morinishi
scheme and its application to the gyrokinetic model. In Section 4, we discuss numerical properties of the new
conservative gyrokinetic full-f Vlasov code by comparing 4D ITG turbulence simulations with the Morinishi
scheme and with a finite volume method. In Section 5, we give benchmarks of 4D and 5D ITG turbulence
simulations between the new Vlasov code and a conventional PIC code. In the comparison, we also clarify
numerical and physical effects of the vk nonlinearity on the Vlasov and PIC simulations. Finally, a summary
is given in Section 6.

2. Calculation model

In the present study, we consider the electrostatic ITG turbulence described by gyrokinetic ions and adia-
batic electrons in a slab configuration with a uniform equilibrium magnetic field, B = B0b, where b is the unit
vector in the direction of the magnetic field. In the modern gyrokinetic theory [47], the gyrokinetic equation is
written using the gyro-averaged Hamiltonian H in the gyrocenter coordinates, Z ¼ ðt; R; vk; l; aÞ,
H ¼ 1

2
miv2

k þ lB0 þ qih/ia; ð1Þ
where R is a position of the guiding centre, vk is the parallel velocity, l is the magnetic moment, a is the gyro-
phase angle, ms and qs are the mass and charge of the particle species s, respectively, / is the electrostatic po-
tential, and the gyro-averaging operator is defined as Æ Æ æa ” » Æ da/2p. This Hamiltonian yields the gyrokinetic
equation,
DF
Dt
� oF

ot
þ fF ;Hg ¼ oF

ot
þ fR;Hg � oF

oR
þ fvk;Hg

oF
ovk
¼ 0; ð2Þ
and its nonlinear characteristics,
dR

dt
� fR;Hg ¼ vkbþ

c
B0

b�rh/ia; ð3Þ

dvk
dt
� fvk;Hg ¼ �

qi

mi
b � rh/ia; ð4Þ
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where {Æ,Æ} is the Poisson bracket in the gyrocenter coordinates, F is the guiding centre distribution function, and
c is the velocity of light. In the configuration space, we use Cartesian coordinates, (x,y,z), where the field is im-
posed in the z direction, b = ez, the system is periodic in the y and z directions, and equilibrium quantities vary in
the x direction. The equilibrium distribution function, F0, is given by a local Maxwellian distribution function,
F 0ðx; vk; lÞ ¼ f0ðx; vkÞg0ðx; lÞ; ð5Þ

f0ðx; vkÞ ¼
n0ðxÞ

ð2pmiT i0ðxÞÞ1=2
exp �

miv2
k=2

T i0ðxÞ

 !
; ð6Þ

g0ðx; lÞ ¼
1

2pmiT i0ðxÞ
exp � lB0

T i0ðxÞ

� �
; ð7Þ
where n0 and Ti0 are the equilibrium density and temperature, respectively. The electrostatic potential / is
determined by the gyrokinetic Poisson equation,
� r2 þ q2
ti

k2
Di

r2
?

 !
/þ 1

k2
De

ð/� h/ifÞ ¼ 4p qi

Z
dF dð½Rþ q� � xÞ d6Z � qedn0e

� �
; ð8Þ
where dF = F � F0, dn0e is the initial perturbation given for the electron density, d6Z ¼ m2
i B0 dR dvk dl da,

$^ = oxex + oyey, qti is the ion Larmor radius, kDe and kDi are the electron and ion Debye lengths. In the pres-
ent study, the adiabatic electron response is defined using the electrostatic potential averaged over the constant
pressure surface or the y–z surface, h/if �

R
/ dy dz=ðLyLzÞ, where Lx, Ly, and Lz are the system size in the x,

y, and z directions, respectively.
Eq. (2) is the Liouville equation, which shows that F is conserved along the nonlinear characteristics. This

also leads to a conservation of an arbitrary function, C(F), along the nonlinear characteristics,
DCðF Þ
Dt

� oCðF Þ
ot
þ fCðF Þ;Hg ¼ 0: ð9Þ
Therefore, in addition to the total particle number or the L1 norm, N ¼
R

F d6Z, the system has an infinite
number of conserved quantities such as the L2 norm, M ¼

R
F 2 d6Z, and the kinetic entropy,

S ¼ �
R

F ln F d6Z. From the viewpoints of the accuracy and stability of a conservative Vlasov simulation,
conservations of the L1 and L2 norms are particularly important. Another physically relevant conservation
property is the total energy conservation,
Z

H
oF
ot

d6Z ¼ dEk

dt
þ dEf

dt
¼ 0; ð10Þ

dEk

dt
¼ d

dt

Z
1

2
miv2

k þ lB0

� �
F d6Z; ð11Þ

dEf

dt
¼
Z

qih/ia
oF
ot

d6Z ¼ d

dt
1

8p

Z
jr/j2 þ q2

ti

k2
Di

jr?/j2 þ
1

k2
De

j/� h/if j
2

" #
dx dy dz: ð12Þ
In the limiting case without gyro-averaging or Æ/æa! /, the l dependence of F can be assumed to be a local
Maxwellian distribution, F ðR; vk; lÞ ¼ f ðR; vkÞg0ðx; lÞ. By integrating F over l, the gyrokinetic Vlasov–Pois-
son system, (2)–(8), yields a reduced model consisting of the 4D drift-kinetic equation,
h ¼ 1

2
miv2

k þ lB0 þ qi/; ð13Þ

Df
Dt
� of

ot
þ ff ; hg ¼ of

ot
� c

B0

o/
oy

of
ox
þ c

B0

o/
ox

of
oy
þ vk

of
oz
� qi

mi

o/
oz

of
ovk
¼ 0; ð14Þ
and the gyrokinetic Poisson equation,
� r2 þ q2
ti

k2
Di

r2
?

 !
/þ 1

k2
De

ð/� h/ifÞ ¼ 4p qi

Z
dfmi dvk � qedn0e

� �
; ð15Þ
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where the finite Larmor radius (FLR) effect is kept only in the ion polarisation density (the second term in the
l.h.s. of Eq. (15)). The conservation properties are derived in a similar way as in the 5D gyrokinetic Vlasov–
Poisson system. In order to save computational cost, we use the 4D model to discuss the numerical properties
of the new Vlasov code.
3. L1 and L2 Conservative finite difference operator

The drift-kinetic equation (14) may be written as
of
ot
þ vj

of
oxj
¼ 0; ð16Þ
where vj are the nonlinear characteristics, xj are variables in the gyrocenter coordinates, and the index j runs
through j = 1–4. It is noted that the 5D gyrokinetic equation can also be written in the same form, because l is
a constant of motion and enters parametrically in the gyrokinetic equation. Discussions in this section are
applicable also to Eq. (2). The nonlinear characteristics are given by Hamilton’s equation, vj ” {xj,h}, which
satisfy
ovj

oxj
¼ 0: ð17Þ
Therefore, the problem is seen as the continuity equation for f transported by incompressible Hamiltonian
flows in phase space. In order to discuss conservation properties in this problem, we introduce symbolic nota-
tions following Ref. [43],
of
ot
þ ðConv:Þ ¼ 0: ð18Þ
The operator (Conv.) may be written in the following three types of convective forms, the divergence form,
(Div.), the advection form, (Adv.), and the skew-symmetric form, (Skew.),
ðDiv:Þ � ovjf
oxj

; ð19Þ

ðAdv:Þ � vj
of
oxj
¼ ðDiv:Þ � f ðCont:Þ; ð20Þ

ðSkew:Þ � 1

2

ovjf
oxj
þ 1

2
vj

of
oxj
¼ ðDiv:Þ � 1

2
f ðCont:Þ; ð21Þ
where
ðCont:Þ � ovj

oxj
: ð22Þ
(Div.) trivially conserves the total particle number or the L1 norm, while (Adv.) and (Skew.) conserve it provided
that the flow is exactly solenoidal or (Cont.) = 0. By multiplying f, Eq. (18) yields the continuity equation for f2/2,
of 2=2

ot
þ f ðConv:Þ ¼ 0: ð23Þ
f(Conv.) can also be written using the above three operators,
f ðDiv:Þ ¼ ovjf 2=2

oxj
þ 1

2
f 2ðCont:Þ; ð24Þ

f ðAdv:Þ ¼ ovjf 2=2

oxj
� 1

2
f 2ðCont:Þ; ð25Þ

f ðSkew:Þ ¼ ovjf 2=2

oxj
: ð26Þ
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In contrast to the L1 norm, the L2 norm is trivially conserved with (Skew.), while (Div.) and (Adv.) are
conservative for the L2 norm when (Cont.) = 0.

We then discuss conservation properties of the L1 and L2 norms for discrete operators. In the present work,
we use a uniform regular grid system where both f and vj are defined at the same grid points. We use the fol-
lowing notations in writing discrete operators,
dnA
dnx1

� Aðx1 þ nh1=2; x2; x3; x4Þ � Aðx1 � nh1=2; x2; x3; x4Þ
nh1

; ð27Þ

�Anx1 � 1

2
Aðx1 þ nh1=2; x2; x3; x4Þ þ

1

2
Aðx1 � nh1=2; x2; x3; x4Þ; ð28Þ

fABnx1 � 1

2
Aðx1 þ nh1=2; x2; x3; x4ÞBðx1 � nh1=2; x2; x3; x4Þ

þ 1

2
Aðx1 � nh1=2; x2; x3; x4ÞBðx1 þ nh1=2; x2; x3; x4Þ; ð29Þ
where hj is the grid spacing in the xj direction and n is an integer. It is noted that only in Eqs. (27)–(29), we use
n differently from the other equations. By applying a second-order accurate centred finite difference to Eqs.
(19)–(21), we have the following convective operators:
½Div:� � d2vjf
d2xj

; ð30Þ

½Adv:� � vj
d2f
d2xj
¼ d1

fvjf 1xj

d1xj
� f ½Cont:�; ð31Þ

½Skew:� � 1

2
½Div:� þ 1

2
½Adv:� ¼

d1�v
1xj
j

�f 1xj

d1xj
� 1

2
f ½Cont:�; ð32Þ
where
½Cont:� � d2vj

d2xj
: ð33Þ
The L1 norm is automatically conserved by [Div.], which is equivalent to a finite volume method or a centred
finite difference method. On the other hand, [Adv.] and [Skew.] conserve the L1 norm if vj is discretised so that
[Cont.] = 0 is satisfied. The conservation property of the L2 norm is seen by discrete forms of Eqs. (24)–(26),
f ½Div:� ¼ d1
gfðvjfÞ1xj

d1xj
� vjf

d2f
d2xj

; ð34Þ

f ½Skew:� ¼
d1�v

1xj
j
gf 2=21xj

d1xj
; ð35Þ

f ½Adv:� ¼ 2f ½Skew:� � f ½Div:�: ð36Þ
Here, the L2 norm is conserved only with [Skew.].
As mentioned above, discretised forms of the nonlinear characteristics dictate the conservation properties

of the discrete operator. In the present 4D model, we define vj as
v1 ¼ �
c

B0

d2/
d2y

; ð37Þ

v2 ¼
c

B0

d2/
d2x

; ð38Þ

v3 ¼ vk; ð39Þ

v4 ¼ �
qi

mi

d2/
d2z

; ð40Þ
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where / is determined self-consistently by solving the gyrokinetic Poisson equation (15). Since Eqs. (37)–(40)
definitely satisfy [Cont.] = 0, the skew-symmetric operator conserves both the L1 and L2 norms. However,
precisely speaking, the conservation of the L2 norm depends also on the time integration scheme. If one uses
non-dissipative methods such as the implicit midpoint rule or its higher order extensions [48,49,44], the L2
norm may be exactly conserved. But, such an implicit scheme is costly, especially for the 5D gyrokinetic sim-
ulation. In the present study, we use the fourth-order Runge–Kutta method which leads to a small error in the
L2 norm conservation by weak numerical dissipation.

A fourth-order accurate convective operator, ÆSkew.æ, is obtained as a combination of the second-order
accurate convective operator, [43]
hSkew:i � 4

3

d1�v
1xj
j

�f 1xj

d1xj
� 1

3

d2�v
2xj
j

�f 2xj

d2xj
� f

1

2
hCont:i; ð41Þ

f hSkew:i ¼ 4

3

d1�v
1xj
j
gf 2=21xj

d1xj
� 1

3

d2�v
2xj
j
gf 2=22xj

d2xj
; ð42Þ

hCont:i � 4

3

d2vj

d2xj
� 1

3

d4vj

d4xj
: ð43Þ
The corresponding definitions of vj are given as
v1 ¼ �
c

B0

4

3

d2/
d2y
� 1

3

d4/
d4y

� �
; ð44Þ

v2 ¼
c

B0

4

3

d2/
d2x
� 1

3

d4/
d4x

� �
; ð45Þ

v3 ¼ vk; ð46Þ

v4 ¼ �
qi

mi

4

3

d2/
d2z
� 1

3

d4/
d4z

� �
: ð47Þ
These definitions satisfy ÆCont.æ = 0, and both the L1 and L2 norms are conserved with ÆSkew.æ. This operator
is applicable also to the 5D gyrokinetic model by replacing / with Æ/æa.
4. Numerical properties of new Vlasov code

In studying numerical properties of the new Vlasov code, we solve the ITG turbulence using a reduced 4D
model without the gyro-averaging. The drift-kinetic equation (14) is discretised using the second-order accu-
rate skew-symmetric finite difference operator (32). The time integration is performed with the fourth-order
Runge–Kutta method with an adaptive control of the time step width which keeps the CFL (Courant–Fried-
richs–Lewy) number, s, constant. The gyrokinetic Poisson equation is solved using a fast Fourier transform
(FFT) technique. A finite difference solver and a FFT solver are parallelised with 2D domain decomposition
(x–y or kx–ky), and all the communications are implemented using the MPI2 put/get. In the 5D gyrokinetic
simulation, where l appears in the gyro-averaging operator, the code is parallelised also in the l direction.
We write the gyro-averaging operator in Fourier space,
/ðx; tÞ ¼
X

k

/kðtÞeik�x; ð48Þ

h/ðR; tÞia ¼
X

k

/kðtÞJ 0ðk?qÞeik�R; ð49Þ

dF ðR; vk; l; tÞ ¼
X

k

dF kðvk; l; tÞeik�R; ð50ÞZ
dF dð½Rþ q� � xÞ d6Z ¼

X
k

2p
Z

dF kðvk; l; tÞJ 0ðk?qÞeik�xm2
i B0dvkdl; ð51Þ
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where J0(k^q) is the zeroth-order Bessel function, q = v^/Xi, v? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lB0=mi

p
, and Xi = qiB0/mic. Since l en-

ters the gyrokinetic equation parametrically, the code is designed as a cluster of 4D simulations with different
gyro-averaging operators, which are coupled through the gyrokinetic Poisson equation (8). Communications
among different l parts are implemented using the MPI1 group communication. Fig. 1 shows the performance
evaluation of the new Vlasov code on the JAEA (Japan Atomic Energy Agency) Altix3700Bx2 system, which
consists of 2048 processing elements with the total performance of 13Tflops and the total memory size of
13TB, where each processing element has an Itanium2 processor (1.6 GHz, 6.4 Gflops) with 6.4GB memory.
In Fig. 1a, the processor number scan with fixed problem size (N x � Ny � N z � N vk � N l ¼ 512� 512
�64� 100� 24, �2TB memory) shows degradation of the sustained performance from �26.4% with 384 pro-
cessors to �18.2% with 1536 processors. In Fig. 1b, the ratio of the processing speed of 1536 processors to 384
processors is �2.7. On the other hand, the processor number scan with scaling problem size
(Nx � Ny � Nz � Nvk � Nl ¼ 512� 512� 64� 100� 24, �2TB memory for 384 processors, Nx � N y � Nz

�Nvk � Nl ¼ 512� 512� 64� 100� 48, �4TB memory for 768 processors, and Nx � N y � Nz � Nvk
�Nl ¼ 512� 512� 64� 100� 96, �8TB memory for 1536 processors) does not show such degradation
and the sustained performance is kept around �25%.

In the present 4D simulation, we consider a hydrogen plasma in a slab configuration with Lx = 2Ly � 32qti,
Lz � 8000qti, and Lvk ¼ 10vti (vk ¼ �5vti � 5vti). n0 and Te0 are assumed to be homogeneous, and Ti0 is given as
Fig. 1.
and th
�Nvk �
�64�
proces
T i0ðxÞ ¼ �T i 1� Lx

2pLti

cos
2px
Lx

� �
; ð52Þ
where �T i ¼ T e0 and Lti � 37qti (see Fig. 2a). In the equilibrium profile (52), positive and negative temperature
gradient regions coexist so that we can use the periodic boundary condition also in the x direction. The bound-
ary condition in the vk direction is given as �v1x4

4 ¼ 0 at the boundary. This boundary condition does not affect
the conservations of the L1 and L2 norms. The initial condition is given by a local Maxwellian distribution, f0,
for ions, and a small initial perturbation with the Gaussian distribution is given for the electron density,
dn0e ¼ n0�0 exp �ðx=Lx � 1=2Þ2 þ ðy=Ly � 1=2Þ2 þ ðz=Lz � 1=2Þ2

2r2

" #
; ð53Þ
where we use �0 = 10�10 and r = 0.1. From a convergence study, we have determined numerical parameters of
the standard case with the grid number, Nx � N y � Nz � Nvk ¼ 128� 64� 32� 128 (Dx = Dy � qti/4), and the
CFL number, s = 0.4, which corresponds to Dt � 20X�1

i and Dt � 7X�1
i in the linear and nonlinear phases,

respectively. Since the present simulation has neither a collision term nor any other dissipation models to
Parallel processing performances of G5D code on the JAEA Altix3700B · 2 system. (a) and (b) shows the sustained performance
e processing time of a single step with different numbers of processors. The cases with fixed problem size (Nx � Ny � Nz

Nl ¼ 512� 512� 64� 100� 24, �2TB memory) and with scaling problem size (Nx � Ny � Nz � Nvk � Nl ¼ 512� 512
100� 24, �2TB memory for 384 processors, Nx � Ny � Nz � Nvk � Nl ¼ 512� 512� 64� 100� 48, �4TB memory for 768
sors, and Nx � Ny � Nz � Nvk � Nl ¼ 512� 512� 64� 100� 96, �8TB memory for 1536 processors) are plotted.



Fig. 2. The ion temperature profiles used in (a) 4D and (b) 5D ITG turbulence simulations.
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smear out fine velocity space structures, the recurrence [41] is inevitable, and we thus stop the simulation be-
fore the recurrence occurs. Although the initial saturation amplitude is converged with much smaller N vk , we
use Nvk ¼ 128 to keep an enough simulation time for studying numerical properties in the nonlinear phase. In
a practical problem, N vk may be reduced by implementing a physical collision term, which possibly eliminates
the recurrence.

Firstly, we discuss numerical properties of the skew-symmetric operator by comparing simulations
with [Skew.] and with [Div.]. In the present ITG turbulence simulation, two ITG modes, which propagate
Fig. 3. The time histories of (a) the field energy, Ef, (b) the total particle number, N, (c) the negative particle number, N�, and (d) the L2
norm, M, observed in ITG turbulence simulations with [Div.] and with [Skew.]. In (a), both simulations show almost the same saturation
amplitudes, but the field energy in the simulation with [Div.] blows up at tXi · 10�3 � 24. In (b), both simulations conserve N and show
similar time histories until the simulation with [Div.] breaks down. In (c), the simulation with [Div.] shows a rapid growth of N� which
comes from numerical oscillations, while in the simulation with [Skew.], N� is kept at a low level (N�/N(0) < 10�6). In (d), the simulation
with [Div.] shows an exponential growth of the error of M, while the simulation with [Skew.] shows an approximate conservation of M.



Fig. 4. The relative errors of (a) the total energy and (b) the L2 norm observed in the ITG turbulence simulation with the second order
accurate skew-symmetric operator and the fourth order Runge–Kutta method. Values at tXi · 10�3 � 25 are plotted against (a) Dx(=Dy)
and (b) the CFL number s. The standard parameters are used except for these parameters. The errors of the total energy and the L2 norm
increase with |dEtotal| � Dx2 and |M(t) �M(0)| � s5, respectively.
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in opposite directions, are excited in the positive and negative temperature gradient regions, respectively (see
Fig. 5a). In the saturation phase, ITG modes saturate by self-generated zonal flows, which break up the linear
mode structures. In the nonlinear phase, m = n = 0 zonal flows become dominant, and they are sustained
almost in a quasi-steady level (see Fig. 5c), where ky = 2pm/Ly and kz = 2pn/Lz. Fig. 3 shows the time evolu-
tions of the field energy, Ef, the total particle number, N, the negative particle number, N�, and the L2 norm,
M, observed in these two simulations. Here, N� is defined as the sum of spurious negative values of f over
phase space. In Fig. 3a, the simulation with [Skew.] shows the nonlinear saturation, while the simulation with
[Div.] breaks down in the saturation phase. In order to understand the cause of numerical instability, we check
the conservations of N and M. As shown in Eqs. (30) and (34), [Div.] conserves only N. The simulation results
in Figs. 3b and d also support this prediction. The exponential growth of the error of the L2 norm with a con-
stant L1 norm leads to the growth of numerical oscillations, which produce spurious negative values of f. In
Fig. 3c, a rapid growth of N� is observed in the saturation phase. In contrast, [Skew.] conserves both the L1
and L2 norms, and the simulation with [Skew.] shows a conservation of N and an approximate conservation of
M. Although spurious negative particles are produced also in the simulation with [Skew.], the growth of
numerical oscillations or N� is suppressed by the conservation of M, and the simulation is numerically stable
for a long time in the nonlinear phase.

In Figs. 4a and b, the errors of the total energy and the L2 norm are checked by varying numerical param-
eters. In the present standard case, the error of the total energy is most sensitive to Dx and Dy, which deter-
mine resolution of the E · B nonlinearity. Although it is difficult to identify the cause of the error of the total
energy, which is influenced also by a field solver, the error of the total energy increases with �Dx2 in the con-
vergence test in Fig. 4a. On the other hand, as discussed in the previous section, the error of M comes purely
from the time integration error, which depends on the CFL number s. In Fig. 4b, the error of the L2 norm is
proportional to s5, which is consistent with the accuracy of the fourth-order Runge–Kutta method (with fifth-
order accuracy [50]).
5. Comparisons between Vlasov and PIC simulations

In order to demonstrate the validity of the new Vlasov code, G5D, we show comparisons of ITG turbulence
simulations using the Vlasov and PIC codes. A PIC simulation is performed using G3D [51], which was orig-
inally developed to study the slab electron temperature gradient driven (ETG) turbulence. In G3D, the gyr-
okinetic equation (2) is solved using the df method, where the perturbed distribution function df = f � f0 is
expressed by Monte-Carlo sampling via marker particles, and df is solved along the nonlinear characteristics
with an evolution equation of df,
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Ddf
Dt
¼ �ff0;Hg; ð54Þ
or the constancy of f,
df ðZðtÞÞ ¼ f ðZðt0ÞÞ � f0ðZðtÞÞ: ð55Þ
In Ref. [52], it was shown that both methods give the same simulation results. Although a method to re-
duce a sampling noise was proposed [53], in this work, we use a conventional Maxwellian loading to make
comparisons between cases with and without the vk nonlinearity using the same initial marker particle dis-
tribution. In the initial condition, small particle weight is given for ion marker particles, and the initial per-
turbation (53) is given for the neutralising electron density. Since the initial particle weight is quickly
damped after starting the simulation, the ITG mode grows from almost the same initial condition as
the Vlasov simulation. In the 5D gyrokinetic simulation, the gyro-averaging is approximated by the four
point sampling model which is valid for k^qti 6 2 [54], while the reduced 4D simulation uses a guiding-cen-
tre model. The gyrokinetic Poisson equation is solved using a 2D finite element approximation with qua-
dratic splines on the x–y plane and Fourier mode expansion in the z direction. Interactions between fields
and particles are treated with the finite element PIC method [55]. In the finite element PIC method, sub-
grid scale noise is removed by basis functions of finite width, which act similarly to a shape factor of finite
size particles in the ordinary PIC method [56–58]. In the z direction, we use a Gaussian shape factor. In
Fourier space, these spline basis function and Gaussian shape factor work as a low-pass Fourier filter given
as [56],
SðkÞ ¼ sinðkxdx=2Þ
kxdx=2

� �3
sinðkydy=2Þ

kydy=2

� �3

exp � k2
z

2r2
kz

 !
; ð56Þ
where dx and dy are the widths of spline basis functions in the x and y directions, respectively, and rkz is the
width of Gaussian shape factor. In order to make quantitative comparisons, in this section, we impose the
Fourier filter (56) also to the Vlasov simulation. In the comparison, we use the fourth-order accurate skew-
symmetric operator, which improves the quality of the total energy conservation.

5.1. 4D ITG Turbulence simulation

Firstly, we show comparisons of 4D ITG turbulence simulations with the standard case parameters.
Numerical parameters of the PIC simulation are chosen from a convergence study, and we use 1.68 · 107 mar-
ker particles, Nx · Ny = 32 · 16 finite elements (dx = dy � qti), n = �6 � 6, rkz ¼ 7:5� 10�3q�1

ti , and
Dt ¼ 20X�1

i . This particle number corresponds to 2.52 · 103 particles per a finite element and a Fourier mode.
Although the initial saturation amplitude is converged with much smaller particle number, we use this condi-
tion to see a long time behaviour of the PIC simulation. Numerical parameters of the Vlasov simulation are
the same as the standard case except for Nvk ¼ 512, which is also needed to have a long recurrence period in a
long time simulation. By adding the Fourier filter, the linear growth rate and the initial saturation amplitude
are reduced by �4% and �8%, respectively. The computational costs of the present 4D simulation are com-
parable between the Vlasov and PIC simulations, which require �255 and �211 processor · hours on the
JAEA Altix3700Bx2 system, respectively.

In the linear phase, the most unstable mode is n = m = 2 mode, and its linear growth rate agrees well
between the Vlasov (c � 1.235 · 10�3Xi) and PIC (c � 1.240 · 10�3Xi) simulations. In Fig. 5a, the linear eigen-
function also coincide with each other. In Figs. 5c and d, the time histories of the field energy, Ef, and the
volume averaged ion thermal diffusivity, �vi, are plotted. Although nonlinear transient behaviours for
tXi · 10�3 = 25–30 are slightly different, the initial (tXi · 10�3 � 22) and quasi-steady (tXi · 10�3 � 45) satu-
ration levels show quantitative agreements between the Vlasov and PIC simulations. In Fig. 5b, nonlinear
zonal flows also show almost the same structures. From these results, we conclude that the Vlasov and PIC
codes give equivalent results at least up to the early nonlinear phase.

We then discuss about long time behaviours focusing on conservation properties. In the df method,
N ¼

R
f d6Z is conserved because the method is based on Eq. (55), but dN ¼

R
df d6Z ¼ �

R
f0 d6Z, which



Fig. 5. Comparisons of 4D ITG turbulence simulations with and without the vk nonlinearity. (a) shows the linear eigenfunction at
tXi · 10�3 � 15. Here, the linear eigenfunction exactly agrees between the cases with and without the vk nonlinearity, and only the former
case is plotted. (b) shows the structure of nonlinear zonal flows at tXi · 10�3 � 45. (c) and (d) show the time histories of the field energy, Ef,
and the volume averaged ion thermal diffusivity, �vi, normalised with the gyro-Bohm coefficient, q2

tivti=Lti. All the comparisons show
quantitative agreement among four cases.
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is used in solving the electric field, is not conserved because of the statistical sampling error. This error may be
further enhanced by errors in the nonlinear characteristics. The constancy of f along the nonlinear character-
istics (55) is satisfied in an ideal system which is completely described by a single particle distribution
function, f. However, in the df PIC simulation, df is expressed using a discrete Klimontovich distribution
of weighted particles. Therefore, a solution of the gyrokinetic Poisson equation naturally involves a multiple
particle correlation or a Coulomb collision, although it is suppressed in a quite low level by the Fourier filter
(56). From the point of view of the entropy balance relation, the fluctuation entropy in a collisionless plasma
increases monotonically in time, provided that quasi-steady heat transport is finite [18]. Accordingly, the
particle weight, which is proportional to df, also increases in time, and numerical collisions among weighted
particles are enhanced as the particle weight becomes heavier. Because of numerical collisions, the nonlinear
characteristics, Z(t), may be deviated from their true solution, Zt(t), leading to the error of df,
df ðZðtÞÞ � df ðZtðtÞÞ ¼ f0ðZtðtÞÞ � f0ðZðtÞÞ: ð57Þ
In addition, the numerical collision produces numerical heating. In Fig. 6, long time behaviours of the PIC
and Vlasov simulations are compared. Although both simulations show an excellent total energy conser-
vation in the early nonlinear phase, the total energy in the PIC simulation slowly increases in the nonlinear
phase due to the numerical heating. It is noted that the rate of the numerical heating is not changed even
with almost the same time step width as the Vlasov simulation, Dt � 7X�1

i . In contrast, the Vlasov simu-
lation does not show such a numerical heating, and keeps a good energy conservation in a long time sim-
ulation. This is the most significant advantage of the new conservative gyrokinetic full-f Vlasov code. The
error of the total energy in the Vlasov simulation is �3% of the field energy after �150 linear growth
times.



Fig. 6. The time histories of the total energy, dEtotal, the field energy, dEf, and the kinetic energy, dEk, observed in long time ITG
turbulence simulations using (a) the Vlasov code (Nvk ¼ 512) and (b) the PIC code (1.67 · 107 marker particles). The PIC simulation shows
monotonic increase of the total energy, while the total energy in the Vlasov simulation keeps almost constant. The error of the total energy
at t ¼ 120� 103X�1

i � 150c�1 are �3% and �40% of the field energy in the Vlasov and PIC simulations, respectively.
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5.2. Role of vk nonlinearity

From the point of view of modern gyrokinetic theory, a gyrokinetic equation without the vk nonlinearity,
oz/ovkdf , is recognised as a conservative gyrokinetic equation with a spurious source term,
Df
Dt
¼ � qi

mi

o/
oz

odf
ovk

: ð58Þ
Here, we discuss how the spurious source term affects conservation properties. Firstly, it does not affect the
total particle number conservation, because
Z

qi

mi

o/
oz

odf
ovk

d6Z ¼ 0: ð59Þ
On the other hand, the conservation of the L2 norm is violated by the spurious source term,
Z
qi

mi

o/
oz

f
odf
ovk

d6Z ¼
Z

qi

T i

o/
oz

vkdff0 d6Z 6¼ 0: ð60Þ
In the PIC simulation, Eq. (59) may not be satisfied because of the statistical sampling error. In addition, the
PIC simulation without the vk nonlinearity uses Eq. (54) or (55) with the partially linearised characteristics
given by dR=dt ¼ vkbþ c=B0b�r/ and dvk=dt ¼ 0, which may lead to similar errors as in Eq. (57). In
Fig. 7a, the particle number conservation becomes worse without the vk nonlinearity. However, the error
of the particle number, dN, is still at the same order as the inherent error in the PIC simulation, and its effect
on the saturation level is quite small as shown in Figs. 5c and d. On the other hand, in the Vlasov simulation,
the conservation of the L2 norm is violated if the vk nonlinearity is neglected, although the total particle num-
ber is exactly conserved even without the vk nonlinearity. In Fig. 7b, the error of the L2 norm in the initial
saturation phase shows different behaviours between the cases with and without the vk nonlinearity. But, in
the nonlinear phase, their behaviours are very similar, because zonal flows, which are not subject to the vk non-
linearity, become dominant. The errors of the L2 norm in these two cases are of the same order, and the sat-
uration levels in Figs. 5c and d are almost the same.

From the point of view of a physical effect, the influence of the vk nonlinearity on heat transport can be seen
by considering the entropy balance relation. The entropy balance relation is derived by multiplying df/f0 to Eq.
(14) and integrating it over phase space,



Fig. 7. The errors of (a) the particle number dN in the PIC simulation and (b) the L2 norm in the Vlasov simulation are compared between
the cases with and without the vk nonlinearity. In the Vlasov code, the total particle number is exactly conserved in both cases.
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ddS
dt
þ DE�B þ Dvk þ Dflux þ Dfield ¼ 0; ð61Þ

DE�B ¼
Z

c
B0

b�r/ � r ln f0

df 2

2f 0

� �
d4Z; ð62Þ

Dvk ¼
Z

qi

T i

o/
oz

vk
df 2

2f 0

� �
d4Z; ð63Þ

Dflux ¼
Z

c
B0

b�r/ � r ln f0df d4Z; ð64Þ

Dfield ¼
Z

qi

T i

o/
oz

vkdf d4Z; ð65Þ
where d4Z ¼ mi dR dvk and the fluctuation entropy is defined as dS �
R

df 2=2f 0 d4Z. The fluctuation entropy
means a difference between microscopic and macroscopic entropy, dS ¼

R
f ln f d4Z �

R
f0 ln f0 d4Z þ Oðdf 3Þ

[18]. The entropy balance relation (61) is derived for the present global model where equilibrium quantities
and their gradients vary consistently. In the limit of a local approximation with constant Ti and $Ti or a com-
plete scale separation between equilibrium and fluctuating quantities, DE·B, Dflux, and Dfield reduce to
DE�B ¼ 0; ð66Þ

Dflux ¼
n0

2T i

Z
c

B0

b�r/dT i dR

� �
� r ln T i; ð67Þ

Dfield ¼
1

T i

dEf

dt
; ð68Þ
where dT i �
R
ðmiv2

kÞdfmi dvk=n0. In Fig. 8a, the terms in the entropy balance relation (61) are plotted. It is
shown that the heat transport, Dflux, is balanced mainly with the entropy production, ddS/dt, and in the qua-
si-steady phase, a steady solution with Dflux � 0 is realized. This result is consistent with results obtained in a
local model without the vk nonlinearity [18]. In the present study, it is confirmed that even though the vk non-
linearity is kept, its contribution to the entropy balance relation is almost negligible.

5.3. 5D ITG turbulence simulation

In 5D ITG turbulence simulations, we consider a hydrogen plasma in a slab configuration with
Lx = 4Ly � 124qti, Lz � 8000qti, Lvk ¼ 10vti (vk ¼ �5vti � 5vti), and Lv? ¼ 3:5vti (|v^| = 0–3.5vti). n0 and Te0

are uniform, and Ti0 is given as



Fig. 8. The time histories of terms in the entropy balance relation observed in (a) 4D and (b) 5D ITG turbulence simulations using the
Vlasov code. The errors in the entropy balance relation are (a) �1.5 · 10�6 at t ¼ 120� 103X�1

i and (b) �8 · 10�6 at t ¼ 70� 103X�1
i . The

heat flux, Dflux, is balanced with the entropy production, ddS/dt, in both cases. The maximum values of the contribution from the vk
nonlinearity, Dvk , are (a) �0.3% and (b) �0.9% of ddS/dt, respectively.
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T i0ðxÞ ¼ �T i exp �Dr
Lti

tanh
x� Lx=2

Dr

� �
; ð69Þ
where Lti = Dr = 0.3Lx and
R

T i0 dx=Lx ¼ T e0 (see Fig. 2b). These parameters are similar to those used in cylin-
drical ITG turbulence simulations in Ref. [46]. In the present case, we impose a fixed boundary condition in
the x direction in the same manner as in the vk direction, �v1x1

1 ¼ 0. The gyrokinetic Poisson equation (8) is also
solved with a fixed boundary condition, / = 0, at x = 0, Lx. From a convergence study, we choose numerical
parameters of the Vlasov simulation as Nx � N y � Nz � Nvk � Nv? ¼ 256� 64� 32� 192� 16 and s = 0.4,
which corresponds to Dt � 20X�1

i and Dt � 4X�1
i in the linear and nonlinear phase. Here, the 5D Vlasov sim-

ulation is converged with larger grid width (Dx = Dy � qti/2) than the 4D simulation, because of the FLR ef-
fect. In the PIC simulation, we use the same numerical parameters except for 6.71 · 107 marker particles, and
Nx · Ny = 128 · 32 finite elements. In the 5D benchmark, the computational costs and the memory usage of
the Vlasov and PIC simulations are, respectively, �2100 and �3800 processor · hours, and �100 GB and �20
GB on the JAEA Altix3700Bx2 system.

Although the linear eigenfunctions of the most unstable mode with n = 2, m = 3 agree well with each other
in Fig. 9a, the linear growth rate observed in the PIC simulation (c � 0.857 · 10�3Xi) is slightly lower (�2%)
than that in the Vlasov simulation (c � 0.873 · 10�3Xi), because the gyro-averaging is calculated using differ-
ent models, J0(k^q) in the Vlasov simulation and the four point sampling model in the PIC simulation. The
time histories of the field energy, Ef, and the volume averaged ion thermal diffusivity, �vi, are shown in Figs. 9c
and d. After the saturation of the most unstable mode at tXi · 10�3 � 28, a turbulent region spreads towards
boundaries in the nonlinear evolution phase for tXi · 10�3 = 30–50, and then, the system goes to the quasi-
steady phase dominated by zonal flows. Although the saturation levels of Ef and �vi show reasonably good
agreements between the Vlasov and PIC simulations, the quantitative agreements are not so good as 4D sim-
ulations, because of slightly different linear growth rates and complicated turbulence spreading processes in
the nonlinear evolution phase. In Fig. 9b, zonal flows apart from the most unstable region at x = Lx/2 are
produced through the nonlinear turbulence spreading processes, and their structures show different patterns.
It should be noted that in the PIC simulation, the zonal flows or the radial electric fields are not zero at the
boundaries because of the error of the particle number. The breakdown of the total energy conservation at
tXi · 10�3 = 70 is �10% and �22% of the field energy in the Vlasov and PIC simulations, respectively.

Effects of the vk nonlinearity are investigated also in 5D ITG simulations. In the entropy balance relation in
Fig. 8b, the contribution from the vk nonlinearity is negligible. Here, the entropy balance relation can be
derived also for the 5D gyrokinetic model in the similar way as in the 4D reduced model. However, in
Fig. 9, differences between the cases with and without the vk nonlinearity are enhanced compared to those
in the 4D ITG simulations. The errors of the particle number in the PIC simulation and of the L2 norm in



Fig. 9. Comparisons of 5D ITG turbulence simulations with and without the vk nonlinearity. Plots are the same as Fig. 5. In (a) and (b),

the linear eigenfunction and the zonal flow structure are observed at tXi · 10�3 � 20 and tXi · 10�3 � 70.
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the Vlasov simulation are shown in Figs. 10a and b. In contrast to the 4D simulations, in which an influence of
the vk nonlinearity on these errors appears only in the initial saturation phase, the errors in the 5D simulations
are continuously produced by turbulent activities with finite o//oz in the nonlinear evolution phase. Espe-
cially, in the Vlasov simulation, the error of the L2 norm in the case without the vk nonlinearity becomes
an order of magnitude larger than the inherent error due to the time integration scheme. These results show
that the vk nonlinearity is physically unimportant, but may produce significant errors numerically.
Fig. 10. The errors of (a) the particle number dN in the PIC simulation and (b) the L2 norm in the Vlasov simulation are compared
between 5D ITG simulations with and without the vk nonlinearity. In the Vlasov code, the total particle number is exactly conserved in
both cases.
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6. Summary

In this work, we have developed a new conservative gyrokinetic full-f Vlasov code, G5D, using the Morin-
ishi scheme. In the scheme, the skew-symmetric finite difference operator conserves both the L1 and L2 norms.
Numerical properties of the new Vlasov code have been discussed by comparing the results from ITG turbu-
lence simulations with the skew-symmetric operator and with the divergence operator. Here, the latter scheme
is equivalent to a finite volume method or a centred finite difference method. The comparison has shown that
the former scheme is numerically stable and robust in a long time simulation, while the simulation with the
latter scheme breaks down in the nonlinear phase. The ITG simulation with the skew-symmetric operator
shows an exact conservation of the L1 norm and an approximate conservation of the L2 norm. Here, the small
error of the L2 norm comes not from the nonlinear convection term but from the time integration scheme.
From these results, it has been demonstrated that the conservation of the L2 norm is very helpful for avoiding
the growth of numerical oscillations. In addition to the conservations of the L1 and L2 norms, the total energy
conservation is confirmed. Although small spurious negative values of f, which violate the definition of the
kinetic entropy, are observed, the simulation satisfies the entropy balance relation of the fluctuation entropy,
which is much more relevant in dictating the turbulent heat flux.

The new Vlasov code has been successfully benchmarked against a conventional df PIC code, G3D. ITG
turbulence simulations with the Vlasov and PIC codes show reasonably good agreement both in the linear and
early nonlinear phases. In a long time simulation, the new Vlasov code shows the good total energy conser-
vation as well as the exact particle number conservation, while in the PIC simulation, the particle number is
not conserved and the total energy slowly increases due to the numerical heating. Conservations of the total
particle number and the total energy are essential properties for a long time full-f Vlasov simulation with
evolving background profiles. The results show that the new conservative gyrokinetic full-f Vlasov code sat-
isfies these requirements. In the present benchmark parameters, the computational cost of the Vlasov simula-
tion is comparable to that of the PIC simulation, although the memory usage of the Vlasov simulation is larger
by �5 times.

The effect of the vk nonlinearity has been clarified both in the Vlasov and PIC simulations. The entropy
balance relation shows that the contribution from the vk nonlinearity is physically unimportant. However,
comparisons between the simulations with and without the vk nonlinearity have shown that it affects conser-
vation properties numerically. The simulation without the vk nonlinearity produces the error of the particle
number in the PIC simulation, while it leads to the error of the L2 norm in the Vlasov simulation.

In the present decaying turbulence simulation, the influence from the absence of the vk nonlinearity is very
limited, because the quasi-steady phase is dominated by zonal flows which are not subject to the vk nonlinear-
ity. However, in driven turbulence simulations, the error of the L2 norm may be further enhanced by contin-
uously driven turbulent activities with finite parallel electric fields. In this work, it has been shown that the
conservation of the L2 norm is important for numerical stability. In addition, in a toroidal geometry, the
phase space conservation law [59] is not satisfied without the vk nonlinearity, because oðB�k _vk1Þ=ovk 6¼ 0, where
B�k ¼ b � ½Bþ ðB0=XiÞr � bvk� and _vk1 is a perturbed part of nonlinear characteristics in vk. Obviously, this vio-
lates the total particle number conservation. In Ref. [60], comparisons of toroidal df simulations with and
without the vk nonlinearity were shown, and it was reported that its effect was unimportant for their df sim-
ulations with fixed background profiles. However, it is not so clear how the breakdown of conservation prop-
erties affects long time behaviours of full-f simulations with evolving background profiles, because spurious
electromagnetic fields and background profiles may build up due to accumulation of such errors. In future
works, the code will be extended to a toroidal geometry, and non-conservative effects will also be implemented
towards a long time driven turbulence simulation. And, the above issue will be addressed again.
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